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LETTER TO THE EDITOR 

Chaotic behaviour of an anharmonic oscillator with almost 
periodic excitation 
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t Institute of Applied Mechanics, Technical University of Lodz, Stefanowskiego 1/ 15, 
90-924 Lodz, Poland 
$ Rand Afrikaans University, Department of Physics, PO Box 524, Johannesburg 2000, 
Republic of South Africa 

Received 2 February 1987 

Abstract. The influence of the almost periodic excitation on the chaotic behaviour of the 
anharmonic oscillator is reported. 

Recently aperiodic solutions of the non-linear systems have attracted increasing atten- 
tion. Several examples of chaotic solutions which form ‘strange attractors’ are known 
[l-71. One of the best known is Duffing’s oscillator which plays an important role in 
many physical problems [8-121. In the present letter the special Duffing’s oscillator 
excited by almost periodic force: 

x+ ax +x3 = B cos or cos Rr = ~ B [ C O S ( R  - o ) r    cos(^+ w ) r ]  (1) 

is considered. The unperturbed system has a homoclinic orbit and for w = 0 and 
a = 0.1, R = 1.0, B E  [9.9, 13.31 the chaotic behaviour was found by Ueda [8]. Equation 
(1) is a special case of the system with two external periodic forces which was 
investigated in [12] and of the general equation [13]. Now we are interested in the 
influence of the frequency w on the chaotic behaviour of the system. 

For characterising the chaotic behaviour we have calculated the maximum one- 
dimensional Lyapunov exponent A,,, . For regular behaviour (periodic or quasi- 
periodic) we have A,,, = 0 and for chaotic behaviour A,,, > 0. The one-dimensional 
Lyapunov exponent has been determined by casting (1) into an autonomous system 
of first-order differential equations (xl = x, x2 = x1 , x3 = R -  w, x4 = R + o) and then 
solving this system together with its variational system: 

Y l  =y2 

j2 = -ay2 - 3x:yl  -fB[(sin x 3 ) y 3  + (sin x4)y41 

y 3  = 0 

y4=0 

where x3(0) = x4(0) = 0. Without loss of generality we can put y 3  = y4 = 1. The one- 
dimensional Lyapunov exponents are defined by: 

A ( X I ( O ) ,  X*(O), YI(O) ,  Y 2 ( 0 ) )  = lim T-’ lnlly(T)II 
T+W 
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where we select the biggest rate by varying the initial values x,(O), x,(O), y , (O) ,  y 2 ( 0 ) .  
The Lyapunov exponent is independent of the norm. We use Ily(( := Z?=, /y i l .  We let 
digital time integrations run for a long time so that all transients have decayed and 
then allow a ‘single trajectory’ to wander over the final attractor. 

The plots of maximum one-dimensional Lyapunov exponent against w for different 
values of B have been shown in figure 1 .  In this figure we observed an interesting fact 
that for w = 0.5 and 0.75 we obtained A,,, = 0 and regular behaviour of the system ( 1 ) .  

For these values of w equation ( 1 )  has the following forms: 

x +  ax + x3 = f ~ [ c o s  i t  +cos $ r ]  

X + ax + x3 = f ~ [ c o s  f r  +COS it]. 

S,:(x,x,  t)+(x,x,t+45T) 

(3) 

(4) 

and 

As equations ( 3 )  and (4) have the following symmetry under the transformations 

equation (3) and 

S2:(x ,x , t )+(x ,x ,  f + 8 7 ~ )  

equation (4) we can compute PoincarC maps M l , 2 ~  R 2  defined as the following sets: 

MI = {(x( t ) ,  x(  t )  1 t = 4kr, k = 1,2,3,  . . .} 
for equation (3) and 

M2={(x(t),x(t)lt=8k7r, k = l , 2 , 3 , . .  .} 
where x(t)  is a solution of equations (3) and (4). Finite approximations of have 
been calculated numerically by the Runge-Kutta method [ 141. 

Examples of such maps are shown in figure 2. At first sight they seem to represent 
‘strange attractors’, however after the calculation of about 900 points, the attractors 
turn to converge to the almost periodic solution of 1 1  components for w = 0.5 and 13 
components for w = 0.75. Figure 3 shows the amplitudes of the Fourier components 
against frequency for x(  t ) .  

To summarise the results presented above we find that the existence of the second 
frequency ‘weakens the chaotic behaviour’. The chaotic behaviour of the system ( 1 )  
was found for B E  [9.9, 13.31 and w E [0,0.95). In the interval of w we find isolated 
points 0.5 and 0.75 for which the system has almost periodic solutions with complicated 
form. 

W 

Figure 1. Maximum one-dimensional Lyapunov exponent Amax against U :  a = 0.1, R = 1.0. 
A, B=lO.O;  B, 8=11.5;C, B=13.0.  
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Figure 2. PoincarC maps of the system ( 1 ) :  a =0.1, a= 1.0. ( a )  B =  10.0, w =0.5; ( b )  
B=10.0,  w=O.75; ( c )  B=11.5,  w = O . 5 ;  ( d )  B=11.5,  w=O.75. 
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Figure 3. Frequency spectra: a =0.1, 0 = 1.0, B =  10.0. ( a )  w = 0.5; ( b )  w =0.75. 
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